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A Biomimetic Synthesis of the 
Bithiazole Moiety of Bleomycin 

Sir: 

The antibiotic bleomycin is of current interest because of 
its clinically useful anticancer activity.1 As part of a total 
synthesis of bleomycin B2 (1), we have been investigating the 
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chemistry of the bithiazole moiety, the biosynthetic elaboration 
of which probably involves dehydrative cyclization of/3-alan-
ylcysteinylcysteine and dehydrogenation of the intermediate 
A2-thiazolines.2 Although the preparation of A2-thiazolines 
from certain cysteinyl peptides has been reported not to be 
possible,3 and no efficient methods have been recorded for the 
oxidation of complex A2-thiazolines, we report herein a 
biomimetic synthesis of the bithiazole moiety of bleomycin. 
Since several other natural products contain single thiazoles 
or A2-thiazoline groups,4 this synthetic approach should also 
be of more general utility. 

Although several agents previously employed for the prep­
aration of simple thiazolines5 failed to effect the conversion 
of dipeptide 2a6 to the corresponding thiazoline, treatment of 
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chloroform solutions of 2a (R' = H or (C6H5)3C) with hy­
drogen chloride at 0 0C afforded ethyl 2-(2-acetamidoethyl)-
A2-thiazoline-4-carboxylate (3a), mp 156-158 0C, in yields 
up to 77% (purification by crystallization from benzene-
chloroform-petroleum ether or distillation at 160 °C/(0.1 

mm)), Xmax (1:1 -HCl-C2H5OH) 267 nm. Of the reagents 
previously used for the oxidation of thiazolines,7 only activated 
MnO2 (CHCl3, room temperature, 4 days) gave significant 
conversion of 3a to 4a; the latter was obtained as colorless 
crystals in 65% yield. A much better yield of 4a (93%) was 
obtained by the use OfNiO2. In a typical experiment 293 mg 
(1.20 mmol) of 3a and 762 mg of NiO2

8 in 25 mL of CHCl3 
was shaken for 42 h. After filtration, concentration of the fil­
trate and crystallization of the residue (ether) gave 4a in a good 
state of purity9 as colorless needles: mp 83-84 0C; Xmax 
(C2H5OH) 236 nm; NMR (CDCl3, (CH3)4Si) 8 1.45 (t, 3), 
2.00 (s, 3), 3.28 (t, 2), 3.74 (m, 2), 4.42 (q, 2) 6.70 (br, 1), 8.09 
(s, 1). Analogous conversion of 2b to 4b was also effected, al­
though the transformation 2b (R' = H) -»• 3b generally pro­
ceeded in somewhat lower yield than 2a — 3a. 

Saponification of 4a and 4b (KOH, aqueous dioxane) gave 
the respective carboxylates in yields of 96 and 95%. While the 
carboxylate derived from 4a had appreciable solubility only 
in water, and could not be condensed conveniently with S-
tritylcysteine ethyl ester, condensation of the acid derived from 
4b with S-tritylcysteine ethyl ester (iV./V'-dicyclohexylcar-
bodiimide, tetrahydrofuran) afforded tripeptide analogue 5b 
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(R' = (C6H5)3C; 96%) as a white foam. Treatment with 
AgNO3 (1.3 equiv, pyridine-methanol, 12 h) at room tem­
perature gave the corresponding silver mercaptide (100%, R' 
= Ag) as pale yellow crystals. The mercaptide was converted 
to mercaptan 5b (100%, R' = H) by treatment of a methanolic 
suspension of the silver salt with H2S: NMR (CDCl3, 
(CH3)4Si) d 1.33 (t, 3), 1.47 (t, 1), 3.12 (dd, 2), 3.35 (t, 2), 3.88 
(m, 2), 4.27 (q, 2), 4.98 (m, 1), 7.3-7.5 (m, 3), 7.7-8.2 (m, 3), 
8.50 (t, 1), 8.96 (d, 1). Compound 5b (R' = H) was dissolved 
in CHCl3 and treated with a slow stream of hydrogen chloride 
(36 h, room temperature). After concentration of the reaction 
mixture, the residue was partitioned between ethyl acetate and 
aqueous Na2CO3. Workup of the organic phase afforded a 
clear oil (90% recovery; Xmax (1:1 C2H5OH-HCl) 233 and 300 
nm; presumably the thiazolylthiazoline) which was redissolved 
in CHCl3 and shaken in the presence of MnO2 or NiO2

10 (5 
days, room temperature). Workup gave a yellow oil which 
deposited colorless needles of the known1' ethyl 2'-(2-benza-
midoethyl)-2,4'-bithiazole-4-carboxylate (6b) from ethyl ac­
etate-petroleum ether: yield 24%; mp 143-144 0C; Xmax 
(EtOH) 290 nm (log 4.17; NMR CDCl3, (CH3)4Si) S 1.46 
(t, 3), 3.36 (t, 2), 3.93 (t, 2), 4.47 (q, 2), 7.35-7.9 (m, 6), 8.06 
(s, 1), 8.19 (s, 1). 

Having obtained the desired bithiazole (6) via stepwise 
dehydrative cyclization and oxidation, it was of interest to 
attempt the direct conversion of /?-alanylcysteinylcysteine 
derivative 7 to 6 via bithiazoline 8. Treatment of an ethanol-
free CHCl3 solution of 7a (R' = H)12 with a slow stream of 
HCl (24 h, room temperature, followed by concentration under 
diminished pressure) afforded a water-sensitive residue having 
the UV spectrum (Xmax (1:1 C2H5OH-HCl) 266 nm (e 9200)) 
expected of bithiazoline 8a.13 Attempted oxidation of the pu­
tative bithiazoline to 6a (NiO2, CHCl3) gave instead the di­
sulfide derived from 5a (R' = H), whose formation may pro-
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ceed via hydrolysis of 8a by water associated with the oxidant 
or formed during the oxidation. 

Although NiO2 could not be employed for the conversion 
8a —• 6a, this reagent has also been used for the attempted 
oxidation of other partially reduced N-, 0-, and S-containing 
heterocycles, many of which were dehydrogenated in good 
yield. Compounds oxidized successfully with NiO2 included 
2-methylthio-A2-thiazoline (60%), methyl 2-methyl-A2-im-
idazoline-4-carboxylate (81%), l,5-diphenyl-3-(/?-bromo-
phenyl)pyrazoline (95%),M 2,3-dihydrobenzofuran (52%),15 

and several 2,4-disubstituted A2-thiazolines, including 
phleomycin A2(83%).16 
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Oxidation of 9-Hydroxy- and 9-Methoxyfluorene 
Carbanions by Flavin. Proof of Radical Mechanism 

Sir: 

Flavin mediated dehydrogenation reactions which introduce 
unsaturation a,/3 to carbonyl groups are of considerable bio­
chemical interest (lactic acid oxidase, amino acid oxidases, 
succinic acid dehydrogenase, etc.) and have been the subject 
of numerous investigations.1-3 Model studies from this labo-
ratory2b,3b'd have firmly established that it is the resonance 
stabilized carbanion of the substrate which undergoes oxida­
tion by flavin. Kinetic and other evidence supports a radical 
mechanism (Scheme IA) or, less likely, a mechanism involving 
a 4a adduct which goes on to product by specific base catalysis 
(Scheme IB).2b-3-4 

The mechanism of Scheme IA has been favored3 on the basis 
of free-energy calculations,3c-e arguments centered around the 
requirement of specific base catalysis of 4a-adduct decom­
position,3d and the results of studies with l,5-dihydro-3,5-
dimethyllumiflavin.5 However, direct evidence for the for­
mation of a flavin-substrate radical pair, as required by 
Scheme IA, has not been obtained. The present study deals 
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